

PREPARATION OF α-BROMOESTERS VIA THE HALF ESTERS OF MALONIC ACIDS A NOVEL METHOD FOR RAPID DECARBOXYLATION UNDER MILD CONDITIONS O. P. Goel* and U. Krolls Warner-Lambert/Parke-Davis Pharmaceutical Research Division Department of Chemistry 2800 Plymouth Road, Ann Arbor, Michigan 48106

<u>Abstract</u>: α-Bromomalonic acid half esters were prepared in high yield and found to be rapidly decarboxylated to α-bromoesters under mild conditions using lithium carbonate in refluxing tetrahydrofuran.

 α -Bromoesters are very useful intermediates in such well-known organic reactions as the Wittig, Reformatsky, and in substitution reactions with various nucleophiles.¹ The classical preparation of these was achieved by the bromination of monoalkylated malonic acids followed by thermal decarboxylation and esterification.2,3 This method is still the primary source of α bromoesters. Another primary route is the method of Stotter and Hill 4 which involves the bromination of sodium enclates derived from monoalkylated acetoacetic esters by reaction with sodium hydride and then deacetylation. While this method affords good overall yields of α -bromoesters, the use of sodium hydride on large scale poses significant hazard. The α -bromination of carboxylic acids and acid chlorides accomplished by the Hell-Volhard-Zelinsky reaction and its variation 2 ,5 requires the availability of the parent acid. Moreover, the application of these methods to our requirements of α -bromoesters containing a benzyl group gave complex mixtures which were of little preparative value. These considerations also apply to the Rathke and Lindert method 6 on the direct halogenation of lithium ester enclates.

We wish to report novel modifications in the malonic ester synthesis of α -bromoesters which substantially enhance its preparative usefulness on a large scale. This is shown in the following scheme.

This method offers the advantage of eliminating the esterification step, no HBr evolution, excellent yields, and mild reaction conditions throughout. The α -bromoesters were obtained as pale to colorless oils in 94-99% purity without distillation or chromatography. While it is well established 7 that the malonic esters may be hydrolyzed to the half esters, the direct bromination of the potassium salts of half esters to α -bromomalonic acid half esters does not appear to have been reported. Bromination at the α -position proceeds in high yield in glacial acetic acid medium at room temperature (See Reference 8 for $X = OCH_3$, n=2). The α -bromomalonic acid half esters are easily decarboxylated to α -bromoesters in the presence of a mildly basic catalyst. Especially, lithium carbonate in refluxing tetrahydrofuran cleanly catalyzes the rapid decarboxylation with no concomitant dehydrobromination. Decarboxylation is catalyzed at a faster rate by triethylamine in THF but some dehydrohalogenation also takes place especially when elimination leads to conjugation (n=1). In the absence of a catalyst, decarboxylation occurred at 150-160°C to yield dark red oils containing 60-70% of the desired product. The results are summarized in the following tables.

Entry	Malonic Ester Ia	Yield of IIb,c	M.P.	Yield of III ^e	M.P.e
1	n=1, x=H	91 a'i	120-123	89	90-92
2 3	n=2, x=H n=3, x=H	94 8 1	149-153 waxy solid	90 86	101-103 oil
4	n=1, x=Cl	98 d	147-150 42-48	83	57 - 61
5	n=2, x=Cl	92	42-40	80	98-100

Table 1 Compounds II and III in the Synthetic Scheme

a. monoalkylated malonic esters I have been reported previously; 3,9

b. satisfactory microanalysis and nmr spectra were obtained; c. yields are of recrystallized materials from THF or EtOH with n-hexane as diluent. d. not recrystallized. e. yields and M.P. are of unrecrystallized materials which gave satisfactorily elemental analyses and nmr spectra.

		Reaction	ion		
Entry	Catalyst and Amount	Time, hr	Yield <u>a,b</u>	Purity(glc)	
1	Li ₂ CO ₃ , 0.1 mole/mole of III	2	84	95 C	
1	(Et) ₃ N, 0.1	1	92	90d	
2	Li_2CO_3 , 0.1 mole	3	89	99e	
5	Li ₂ CO ₃ , 1.0 mole	1.5	92	99	
2	(Et) ₃ N, 0.1 mole	0.5	88	98	
2	(Et) ₃ N, 1.0 mole	0.2	89	99	
3	Li_2CO_3 , 0.1 mole	3	92	94	
3	(Et) ₃ N, 0.1 mole	1	95	92	
4	Li ₂ CO ₃ , 0.1 mole	1.0	88	98	
5	Li_2CO_3 , 0.1 mole	1.5	90	99	

Table 2 Bromoesters IV

a. undistilled materials; b. satisfactory elemental analyses and/or nmr, i.r, spectra were obtained; c. no ethyl cinnamate was detected in the crude product; d. the product contained 9% ethyl cinnamate which was separated by prep HPLC and compared with an authentic sample; e. an authentic sample was prepared as described in Reference 3.

Experimental: To a solution of 22.2 g (88.6 m moles) benzylmalonic acid diethyl ester, I (entry 1) in 61 ml of absolute ethanol was added a filtered clear solution of 5.8 g (88.6 m moles) KOH (86% assay) in 71 ml of absolute ethanol at 25°C. After one hour of stirring the solvent was removed and the residual colorless syrup crystallized from THF and n-hexane to yield 21 g of II (entry 1)¹⁰; 1H NMR (D₂O) δ 1.16 (t, <u>J</u> = 9 Hz, 3H), 3.12 (d, 2H), 3.57 (q, <u>J</u> = 6 Hz, 1H), 4.05 (q, <u>J</u> = 9 Hz, 2H), 7.13 (s, 5H).

A solution of 19 g (73 m moles) of II from above in 190 ml of glacial ace tic acid was cooled to 15°C and 11.7 g (73 m moles) of bromine added to the slush at 15°C over 1.5 hr. After stirring overnight at room temperature, KBr was filtered off and the filtrate diluted with equal volume of chlorobenzene. The acetic acid-chlorobenzene azeotrope was removed under vacuum. The residue was dissolved in ether, washed with water and dried over MgSO₄. The clear dry ether solution was stripped to dryness and triturated with n-hexane. The product crystallized slowly to yield 19.6 g of III (entry 1);¹H NMR (CDCl₃) & 1.23 (t, $\underline{J} = 6$ Hz, 3H), 3.58 (AB q, $\underline{J} = 15$ Hz, 2H), 4.2 (q, $\underline{J} = 6$ Hz, 2H), 7.13 (s, 5H), 9.82 (s, 1H). A mixture of 5.0 g (17 m moles) of III and 123 mg (1.7 m moles) of Li_2CO_3 powder in 42 ml of THF was refluxed for 2 hours when the indicated complete reaction (EM slica gel plate; developer: toluene:CH₃CN:HOAC 10:9:1). The mixture was filtered and evaporated to dryness. The residue was dissolved in n-hexane, washed with water, 0.1 N HCl, sat. brine and dried over anhydrous MgSO4. The filtrate on evaporation gave 3.6 g of 2-bromo-3-phenylpropanoic acid, ethyl ester as a pale oil. I.R. (liquid film) 1740 cm⁻¹, ¹H NMR (CDCl₃) & 1.19 (t,<u>J</u> = 7 Hz, 3H), 3.3 (m, 2H), 4.11 (q, <u>J</u> = 7 Hz, 2H), 4.35 (t, <u>J</u> = 7.5 Hz, 1H), 7.13 (s, 5H).

Acknowledgement: We cordially thank Dr. J. R. Dice and Dr. J. G. Topliss for their support and encouragement.

References and Notes

- a) A. Maercker, <u>Org. Reactions</u>, 14, 270 (1965) b) F. Gandemar-Bardone and M. Gandemar, <u>Bull. Soc. Chem. Fr.</u>, 2088 (1969) c) A. Wollman and M. S. Dunn, <u>J. Org. Chem.</u>, <u>25</u>, 387 (1960).
- 2. H. O. House, "Modern Synthetic Reactions," 2nd Ed., Benjamin, New York, 1972, pp. 477-478.
- 3. a) E. Fischer and W. Schmitz, B. <u>39</u>, 2208 (1906) b. v. Braun, B. 56, 2178 (1923) c) v. Braun and W. Munch, B. 59, 1944 (1926).
- 4. P. L. Stotter and K. A. Hill, Tet. Lett. 4067 (1972).
- 5. J. G. Gleason and D. N. Harpp, Tet. Lett. 3431 (1970).
- 6. M. W. Rathke and A. Lindert, Tet. Lett. 3995 (1971).
- 7. E. J. Corey, J. Am. Chem. Soc., 74, 5897 (1952).
- 8. Where $X = OCH_3$, n = 2, a mixture of three monobrominated products was obtained.
- 9. M. Kuchar et al., Collect Czech, Chem. Comm. 1976 (41-2) pp. 633-46.
- 10. A small amount of dipotassium salt is formed which is filtered during recrystallization or prior to removal of ethanol.

(Received in USA 28 July 1982)